首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172205篇
  免费   17988篇
  国内免费   10571篇
电工技术   12312篇
技术理论   3篇
综合类   20195篇
化学工业   26208篇
金属工艺   7330篇
机械仪表   12981篇
建筑科学   19233篇
矿业工程   7438篇
能源动力   5929篇
轻工业   9952篇
水利工程   6926篇
石油天然气   8104篇
武器工业   2587篇
无线电   11264篇
一般工业技术   21996篇
冶金工业   6134篇
原子能技术   2784篇
自动化技术   19388篇
  2024年   357篇
  2023年   2226篇
  2022年   4006篇
  2021年   5199篇
  2020年   5435篇
  2019年   4762篇
  2018年   4453篇
  2017年   5562篇
  2016年   6244篇
  2015年   6457篇
  2014年   10410篇
  2013年   10231篇
  2012年   13143篇
  2011年   13449篇
  2010年   10238篇
  2009年   10695篇
  2008年   9783篇
  2007年   12158篇
  2006年   10728篇
  2005年   9048篇
  2004年   7456篇
  2003年   6406篇
  2002年   5298篇
  2001年   4482篇
  2000年   3820篇
  1999年   3217篇
  1998年   2555篇
  1997年   2223篇
  1996年   1898篇
  1995年   1783篇
  1994年   1479篇
  1993年   1118篇
  1992年   1001篇
  1991年   715篇
  1990年   584篇
  1989年   574篇
  1988年   409篇
  1987年   233篇
  1986年   190篇
  1985年   115篇
  1984年   120篇
  1983年   72篇
  1982年   81篇
  1981年   59篇
  1980年   35篇
  1979年   40篇
  1978年   21篇
  1976年   17篇
  1959年   37篇
  1951年   25篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
81.
以智能反射面(intelligent reflecting surface,IRS)辅助的无线携能通信(simultaneous wireless information and power transfer,SWIPT)系统为背景,研究了该系统中基于能效优先的多天线发送端有源波束成形与IRS无源波束成形联合设计与优化方法。以最大化接收端的最小能效为优化目标,构造在发送端功率、接收端能量阈值、IRS相移等多约束下的非线性优化问题,用交替方向乘子法(alternating direction method of multipliers,ADMM)求解。采用Dinkelbach算法转化目标函数,通过奇异值分解(singular value decomposition,SVD)和半定松弛(semi-definite relaxation,SDR)得到发送端有源波束成形向量。采用SDR得到IRS相移矩阵与反射波束成形向量。结果表明,该系统显著降低了系统能量收集(energy harvesting,EH)接收端的能量阈值。当系统总电路功耗为?15 dBm时,所提方案的用户能效为300 KB/J。当IRS反射阵源数与发送天线数均为最大值时,系统可达最大能效。  相似文献   
82.
To the best of our knowledge, this is the first time to report the preparation of a dotted nanowire arrayed by 5 nm sized palladium and nickel composite nanoparticles (denoted as PdxNiy NPs) via a hydrothermal method using NU and PdO·H2O as the starting materials. The samples prepared at the mass ratio of NU to PdO·H2O 1:1, 1:2 and 2:1 were, respectively, nominated as catalyst c1, c2 and c3. The chemical compositions of all synthesized catalysts were mainly studied by using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), revealing that metallic Ni was one main component of all prepared catalysts. Surprisingly, the main diffraction peaks appearing in the XRD patterns of all prepared catalysts were assigned to the metallic Ni rather than the metallic Pd. Very interestingly, as indicated by the TEM images, a large number of dotted nanowires arrayed by numerous equidistant 5 nm sized nanoparticles were distinctly exhibited in catalyst c1. More importantly, when being used as electrocatalysts for EOR, all prepared catalysts exhibited an evident electrocatalytic activity towards EOR. In the cyclic voltammetry (CV) test, the peak current density of the forward peak of EOR on catalyst c1 measured at 50 mV s?1 was as high as 56.1 mA cm?2, being almost 9 times higher than that of EOR on catalyst c3 (6.3 mA cm?2). Particularly, the polarized current density of EOR on catalyst c1 at 3600 s, as indicated by the chronoamperometry (CA) experiment, was still maintained to be around 1.47 mA cm?2, a value higher than the latest reported data of 1.3 mA cm?2 (measured on the pure Pd/C electrode). Presenting a novel method to prepare dotted nanowires arranged by 5 nm sized nanoparticles and showing the significant eletrocatalytic activities of the newly prepared dotted nanowires towards EOR were the major contributions of this preliminary work.  相似文献   
83.
《Ceramics International》2022,48(2):2298-2305
As a promising anode candidate, hierarchical porous transition metal oxide nanosheets (TMO-NSs) have attracted significant interest due to their various advantages of abundant active sites, high specific capacity and shortened ion/electrons transport pathways. Although the TMO-NSs have been developed in the past decades, the previous synthesis strategies have some drawbacks such as high cost, complex synthesis techniques, and the requirement of special instruments. Herein, we develop a generalized and facile biomorphic method to synthesize various controllable hierarchical porous TMO-NSs by using waste bagasse as biotemplate. Furthermore, the porosity and pore size of as-prepared hierarchical porous TMO-NSs can be adjusted by changing the precursor solution concentration. Novel hierarchical porous TMO-NSs have been successfully prepared for many ternary or binary TMO, such as NiFe2O4, ZnFe2O4, ZnMn2O4, NiO and ZnO. Owing to their unique nanostructure, as-synthesized hierarchical porous TMO-NSs show an excellent electrochemical performance when used as anode for Li/Na-ion batteries. We believe that various hierarchical porous TMO-NSs available from the green, economical and convenient biomorphic strategy may lead to further developments in research and application on TMO-NSs materials.  相似文献   
84.
A appropriate size with three-dimension(3 D) channels for lithium diffusion plays an important role in constructing highperforming LiNi_(0.5)Mn_(1.5)O_4(LNMO) cathode materials, as it can not only reduce the transport path of lithium ions and electrons, but also reduce the side effects and withstand the structural strain in the process of repetitive Li~+ intercalation/deintercalation. In this work, an e fficient method for designing the hollow LNMO microsphere with 3 D channels structure by using polyethylene oxide(PEO) as soft template agent assisted solvothermal method is proposed. Experimental results indicate that PEO can make the reagents mingle evenly and nucleate slowly in the solvothermal process, thus obtaining a homogeneous distribution of carbonate precursors. In the final LNMO products, the hollow 3 D channels structure obtained by the decomposition of PEO and carbonate precursor in the calcination can provide abundant electroactive zones and electron/ion transport paths during the charge/discharge process, which benefits to improve the cycling performance and rate capability. The LNMO prepared by adding 1 g PEO possesses the most outstanding electrochemical performance, which presented an excellent discharge capacity of 143.1 mAh g~(-1) at 0.1 C and with a capacity retention of 92.2% after 100 cycles at 1 C. The superior performance attributed to the 3 D channels structure of hollow microspheres, which provide uninterrupted conductive systems and therefore achieve the stable transfer for electron/ion.  相似文献   
85.
Spinels with the generic chemical formula AB2O4 have potential applications in nuclear energy and batteries. In both cases, their functionality is related to mass transport through the crystal. Here, using long-time atomistic simulations, we examine the impact of the cation structure on interstitial transport in two spinel chemistries, inverse MgGa2O4 and double MgAlGaO4. We emphasize two aspects of the transport properties: the unit mechanisms that are described by individual barriers, for which we introduce pole-figure-like plots, and the aggregate behavior of those unit mechanisms. Compared to previous work on normal spinels, we find that inversion significantly reduces the rate of interstitial transport in these structures and has an impact on the stability of defects as they move through the lattice. In particular, B cation interstitials are found to be kinetically stable only in the inverse MgGa2O4. These results provide new insight into relationship between structure, chemistry, and transport in spinels.  相似文献   
86.
87.
Hemorphins are known for their role in the control of blood pressure. Recently, we revealed the positive modulation of the angiotensin II (AngII) type 1 receptor (AT1R) by LVV-hemorphin-7 (LVV-H7) in human embryonic kidney (HEK293) cells. Here, we examined the molecular binding behavior of LVV-H7 on AT1R and its effect on AngII binding using a nanoluciferase-based bioluminescence resonance energy transfer (NanoBRET) assay in HEK293FT cells, as well as molecular docking and molecular dynamics (MD) studies. Saturation and real-time kinetics supported the positive effect of LVV-H7 on the binding of AngII. While the competitive antagonist olmesartan competed with AngII binding, LVV-H7 slightly, but significantly, decreased AngII’s kD by 2.6 fold with no effect on its Bmax. Molecular docking and MD simulations indicated that the binding of LVV-H7 in the intracellular region of AT1R allosterically potentiates AngII binding. LVV-H7 targets residues on intracellular loops 2 and 3 of AT1R, which are known binding sites of allosteric modulators in other GPCRs. Our data demonstrate the allosteric effect of LVV-H7 on AngII binding, which is consistent with the positive modulation of AT1R activity and signaling previously reported. This further supports the pharmacological targeting of AT1R by hemorphins, with implications in vascular and renal physiology.  相似文献   
88.
向森 《电子测试》2021,(6):125-126
电路板在我们的日常生活中非常常见,这就使得印刷电路板的缺陷检测显得尤为重要。AOI作为新兴的检测PCB板缺陷的系统,在生产实际中正在被大家熟知并且应用。相较于传统的检测方式,AOI系统比较灵活,无论是在检测时间还是系统运算上,或者是对相关技术人员的要求相较于传统方式都比较有优势,本文就AOI系统在实际中的应用展开讨论,分析并且介绍了在实际应用中的具体细则。  相似文献   
89.
90.
Based on the nondestructive test data of operating railway tunnels in China, this paper summarizes the basic characteristics of the complex contact behavior between the rock mass and lining structure. The contact modes are classified into dense contact, local non-contact, and loose contact. Subsequently, the corresponding mechanical model for each contact mode is developed according to its mechanical characteristics using the complex variable method. In the proposed mechanical model, a special algorithm is introduced to detect whether the local non-contact zone is re-contacted. Besides, a novel conformal mapping method is also proposed to accurately calculate the mechanical response of the concrete lining. Finally, the accuracy of the proposed method is verified by comparing it with the finite element method (FEM). Several parameter investigations are conducted to analyze the effects of different contact modes on the rock–lining interaction. The results show that: (i) the height of the local non-contact area does not have a significant effect on the contact stress distribution if no re-contact occurs; (ii) backfill grouting can reduce the local stress concentration caused by poor contact modes; and (iii) reducing the friction coefficient of the interface can lead to a more uniform distribution of internal forces in the concrete lining.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号